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SumnHiry

The current slalus of unstnJcturcd-grid methods develop

unent in Ihe Unsteady Aertv, lynamies Branch al NASA Langley

Research Center is descrihed. These methods are being devel-

oped for unsteady aerodynamic ,rod aeroelastic an:dyses. The

paper first highlights the flow solvers that have been developed

For the solution of the unsteady Euler equations amt then gives

selected results which demonstrate various features of the ca-

pabilily. The results demonstrate two and three-dimensional

applications for [x_th steady and unsteady flows. Comparisons

are also made with solutions obtained using a structured grid

code and with experimental data to determine the accuracy of

the unstructured grid methodology. These comparisons show

g_xt agreement which thus verifies the accuracy.

Inlroductkm

Considerable progress has been made over the past two

decades on developing computational fluid dynamics (CFD)

methods fi_r aerodynamic analysis.t'2 Recent work in CFD has

fix:used primarily on developing algorithms for the _flution of

the Euler and Navier-Stokes equations. For unsteady aerody-

namic and aeroelaslic analysis, these methods generally require

that the mesh move to conform to the inslant:meous l_sition

of the moving or deforming body under consideration. Many

of the ruethc_ts that are currently being developed assume that

the mesh moves rigidly or that the mesh shears as the b_.ly

deforms. These assumptions consequently limit the applicabil-

ity of the procedures to rigid-body motions or small-amplitude

defommtions. Furthermore, these methods of solution typically

assume that the compulatkmal grid has an underlying geometri-

cal structure. As an alternative, algorithms have been developed

recently which make use of unstruciured grids. 3-t9 in two di-

mensions these grids are typically made up of triangles and in

three dimensions they consist of an assemblage of tetrahedra.

The unstructured grid methods have several distinct advan-

tages over structured grid methods which make them attractive

flw unsteady aerodynamic and aer_velaslic analyses. For exam-

ple, the primary advantage of the unstructured grid methodoh>gy

is the ability to easily model very connplicated three-dimensional

geometries such as the F[A-18 aircraft shown in Fig. I. '_ The

aircraft was modeled by including the wings with leading edge

exlension, horizontal and vertical tails, as well as the canopy

and the fuselage. The modeling also includes engine inlets and

nozzles to simulate engine power effects. With a structured

grid. it is extremely difficult to achieve this level of geometrical

complexity. A second advantage is thai the methodology allows

fl_r a general way to move the mesh to treat realistic motions

and structural deformations of complete aircraft configurations.

An example of the deforming surface grid for a transport-type

configuration undergoing a complete-vehicle bending motion is

depicted in Fig. 2. The deforming grid capability does not

involve any assumptions which limit applications to small de-

formations, such as the simple grid shearings done in some

structured grid codes. A third advantage is that it enables in a

natural way for adaptive mesh refinement to predict more accu-

rately the physics for the flow. For example, shown in Fig. 3

is a conical vortex-dominated flow solution for a fiat plate delta

wing at a supersonic freestream Mach number. 13 The solution

was obtained by adapting the original coarse mesh three times

to the instantaneous flow. The final result is a highly accurate

solution of the Euler equations, produced by using an order of

magnitude fewer grid points than if a globally fine mesh was

u_d. Similar to spatial adaption, temporal adaption may also

be employed with unstructured grids for unsteady problems to

resolve more accurately and efficiently the physics of the flow in

time. TMTemporal adaption can be thought of as time-accurate lo-

cal time-stepping where smaller time steps am used in grid cells

where the temporal gradients are large and larger time steps are

u_d in cells where the gradients are small. "l_me accuracy is

maintained by bringing all grid cells to the same time level as

determined by the largest step size in the problem.

The purpose of the paper is to describe the current status

of unstructured-grid methc, ds development within the Unsteady

Aerodynamics Branch at NASA Langley Research Center. t°'-t9

The paper first highlights the flow solvers that have been de-

veloped fi)r solution of the tinre-dependent Euler equations and

then gives selected results which demonstrate various features

of the capability. The flow solvers that are demribed are either

of the central-difference-type with explicit artificial dissipation

or of the upwind-type which are naturally dissipative. Both

implicit and explicit temporal discretizations are discussed for

the time-integration of the governing fluid flow equations. De-

tails on the spatial and temporal adaption procedures are also



Fig I Unstructured surface grid for F/A IX fighter configuration.

given. The selected results that are presented demonstrate two-

and three-dimensional appficatkms for both sleady and unsteady

flows. Comparisons are also made with soluticms obtained using

a structured grid c(_le and with experimental d;tla Io determine

the accuracy of the unstructured grid methodology.

lime step may be increased to a value that is hu'ger th:m that dic-

tated by the CFL condition by using a time accurate version of

tile residual smoothing. Alternatively, temporal adaption may

be used which involves a spatially varying time step, as de-

scribed in a subsequent section.

Central-Difference-Type Flow Solver

The unsteady Euler equations in integral fonn are solved

using a finite-volume algorithm that was developed for use on

tmstructurcd grids of triangles in 21) or tetr:lhedr:t in 3D m i.i

The algorithm reduces conceptually to centr:d differencing on a

rectangular mesh imd thus is referred It) as a central-diffi:rence-

type flow solver. With this solver, artificial dissipation is added

explicitly to prevent oscillations near shc_.'k waves and to damp

high-frequency uncoupled error vmxles. Specifically, an ad:up

tire blend of harmonic anti biharmonic opcrators is used, cor

responding to ',econd and fourth difference dissipation, respec-

lively. The biharmonic operator provides a background dissipa-

lion to damp high frequency errors and the hannouic ol_rator

prevents oxcill:llions near sh(_k w:lves.

The I'_uler cqualions are integraled in lime using a stant|artl,

explicit, four-stage, Rungc-Kutta time+stepping scheme. In this

scheme the convective operator, is evaluated al each stage and,

for computational efficiency, the di_,sipative operalor is evalu-

ated only at the first stage. l'be scheme is seccmd-order-accurate

in time and includes the necessary tenvls to at'cotlall for ct|anges

in cell volumes due to a moving <n" defonuing tnesh. Further-

more, this explicit-scheme has a step size that is limited by the

Cour:mt-Friedricks-l.ewy (CFI.) condition correslxmding to a

CFI, number of 2_22. 'It> accelerate c(mvergencc to steady-state,

the CFI+ number may be increased by aver:lging implicitly the

residtnal with values al neighl'x_ring grid l_ivrts. These implicit

equations ;tre solved approximately using several Jacobi itera-

lions_ Convergence to steady-stale ix furtfier .'tceelerated using

cmhalpy damping and h_al lime stepping, The local time step-

ping uses the maximum allowable s_ep size at each grid I_)h+t

as determined by a k_al stability analysis, lq)r unsteady appli-

c:ltiorls, however, a global time step is usually used becausc of

tile time-accuracy requirement. The maxirnlurl allowable global

Upwind-Type Flow Solver

The unsteady Euler equations may be solved ahernatively

by using upwind differencing and either flux-vector or flux-

difference splitting similar to upwind _hemes developed for use

on structured meshes. In. lS-Iq The present unstructured grid al-

g_rithm i,, thus referred to ;Is :m upwiv_l-type flow solver. The

spatial discretization of this solver involves a so-called flux-

split approach based on either the flux-vector splitting of van

I.eer 2° or the flux-difference splitting of Roe. 2t These tlux-split

discreliTations account for the local wave-propagation charac-

teristics of the flow and they capture sh_k waves sharply with

;it most one grid point within the shirk structure. A further

advantage is that these diseretizations are naturally dissipative

and consequently do not require additional artificial dissipation

terms or tile adjustment of free parameters to control the di.,,si-

patron.

"rhc Euler etluali(ms are integrated in time using either an

explicit Runge-Kutta meth_xl (described in the previous section)

or an implicit time-imegration scheme involving a Gauss-Seidel

relaxation prcx:edure. Is The procedure is implemented by re-

ordering the elements that make up the unstructured mesh from

upstream to downstream The solution is obtained by sweeping

two limes through the mesh as dictated by stability considera-

tions. The first sweep is performed in the direction from up-

stream to downstream and the _cond sweep is from downstream

to upstream. For purely supersonic flows the second sweep is

unnecessary. This relaxation scheme is unconditionally stable

and thus allows the selection of the step size based on temporal

accuracy of the problem being considered, rather than on the

numerical stability of the algorithm. Consequently, very large

lime steps may be used for rapid convergence to steady stale,

and an appropriate step size may be selected fl)r unsteady cases,

independent of numerical stability issues.



(a) maximum (bend-up) amplitude. (b) minimum (bend-down) amplitude.

Fig. 2 Surface grid for the Pathfinder I configuration which illustrates how the mesh
moves for an assumed complete-vehicle bending mode.
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Effects of adaptive mesh refinement on the Iotal pressure loss contours for a 75 °
swep! flat phite delta wing computed using the conical Euler equations at

,_/,,._ = 1.4, ,_ = 20 °, and fl = I0 °.



Spatial Adaption Procedure

Spatial adaption is employed with the unstructured grid flow

solvers to enrich the mesh locally in regkms of high spatial flow

gradients to resolve more accurately and efficiently the physics

of the flow. 13 Equally attractive are coarsening techniques that

remove elements from regions where relatively small changes

in the flow variables occur. Both enrichment and coarsening

procedures am currently being developed, t9 However, only the

enrichment procedure is described herein. The enrichment pro-

cedure uses an indicator to determine if an element in the mesh

is to be refined or subdivided into smaller elements. Typically,

the absolute change in density along an edge is used as an indi-

cator for flows with shock waves and total pressure loss is used

for flows with vortices. More recently a refinement indicator

based on the material derivative of density n9 has been shown to

be a superior indicator for unsteady flows. In general, the refine-

ment indicator is compared with a preset tolerance to determine

whether a given element should be refined. If the tolerance is

exceeded, a new node is created at the midpoint of the edge

and the element is divided. Each time the mesh is refined, an

element may be divided in one of several different ways. The

coordinates of the new node are determined by averaging the

c_x_rdinates of the endpoints that make up the bisected edge..

Special care must be taken, however, when an edge that is to

ix: divided lies on a boundary of the grid, since the midpoint of

the edge does not generally lie on the bou_ary. In this case,

the location of the new node is determined generally by using

a spline of the boundary coordinates.

Temporal Adaption Procedure

Temporal adaption is employed with the unstructured grid

flow solvers, similar to spatial adaption, to resolve more accu-

rately and efficiently the physics of the flow in time. 18 Tem-

poral adaption can be thought of as time-accurate local time-

stepping. Local time-stepping is typically used in a non-time-

accurate tnanner to accelerate the convergence of the governing

fluid flow equations to steady-state. Since only steady-state is

desired, it does not matter that every point in the flow is at a dif-

ferent time. This, of course, is not the case for a time-accurate

problem, since each point in the flow for such a calculation must

be on the same temporal level to maintain time-accuracy. The

problem is that if all of the grid cells are marched at the same

time step with ;m explicit time-marching schente, the most re-

strictive time step nmst be used in order to maintain numerical

stability. Temporal adaplion is a method to march each cell at

its own time step, ahhough ultimately the flow variables in all

cells reach the same point in time. Temporal adaptkm can he

viewed as similar to spatial adaplion in that small time steps

should be taken only in localized areas governed by the flow

physics and not in the entire flow field. Typically, small grid

cells are integrated with small time steps and large grid cells

are integrated with large time steps. All of the cells reach the

same tinre level _ + I to maintain time-accuracy by using lo-

cal time steps that are muhiples of one another. The solution

is integrated in a special sequence so that all values necessary

for the calculations at an intcnuediatc level are available at the

proper times. For a particular cell to be integrated from time

level _ to time level u t I. for example, the solution must also

be known at its neighboring cells at time level _. If the value

needed for the integration is unknown at a particular temporal

node, it is determined from a linear interlxdation between two

known values.

Deforming Mesh Algorithm

For problems where the aircraft moves or deforms, the mesh

must move so that it continuously conforms to the instantaneous

shape or position of the vehicle. This is accomplished by

using a spring network to model the original mesh such that

each edge of the triangle or tetrahedron is represented by a

spring, t:' The spring stiffness for a given edge is taken to be

inversely proportional to the length of the edge. Grid points

on the outer boundary of the mesh are held fixed and the

instantaneous locations of the points on the inner boundary

(aircraft) are given by the prescribed surface motion. At each

time step, the static equilibrium equations in the x, y, and

z directions, which result from a summation of forces, are

solved iteratively at each interior node of the grid for the

displacements. This is accomplished by using a predictor-

corrector procedure, which first predicts the displacements of the

nodes by extrapolation from grids at previous time levels and

then corrects these displacements using several Jacobi iterations

of the static equilibrium equations. The predictor-correctot

procedure has been found to he more efficient than simply

performing Jacobi iterations because far fewer iterations are

required to achieve acceptable convergence. In practice it has

been found that only one or two iterations are sufficient to

accurately move the mesh.

Results and Discussion

Selected results from the unstructured-grid methods of Refs.

10-19 are presented for two and three-dimensional geometries

for both steady and unsteady flows. Comparisons are made

with solutions obtained using a structured grid code and with

experimental data to determine the accuracy of the methodology.

Two-Dimensional Euler Results

To assess the two-dimensional central-difference-type Euler

flow solver, calculations were performed for the NACA 0012

airfoil, tl These results were obtained using the unstructured grid

shown in Fig. 4. The grid has 3300 nodes, 6466 triangles, and

extends 20 chordlengths from the airfoil with a circular outer

boundary. Also there are 110 points that lie on the airfoil sur-

face. Generalized aerodynamic forces for the NACA 0012 air-

foil omillating in either plunge or pitch-about-the quurter-chord

Fig. 4 Partial view of unstructured grid of triangles

about the NACA 0012 airfoil.
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Comparisons of steady-state results for the

NACA 0012 airfoil at Mo_ = 0.8 and _o = 1.25 °

computed using the upwind-type Euler flow

solver with fux-vector splitting.

are shown in Fig. 5. For this case the freestream Mach number

was Moo = 0.8 and the angle of attack was (_o = 0 °. Com-

parisons are given among results obtained using the so-called

pulse transfer-function analysis, the harmonic analysis, and a

hm'monic analysis peffomled using a structured grid Navier-

Stokes code (CFL3D) run in an Euler mode. The three sets of

results agree well with one another, for both plunge and pitch

motions, thus verifying the accuracy of the unstructured grid

meth(xl.

Acroelastic results were also obtained for the NACA 0012

airfoil with two degrees-of-freedom (pitch and plunge) at Moo=

0.8 and ¢,o = 00. u Comparisons of second mode generalized

displacements (qz) are shown in Fig. 6 for three values of

nondimensional dynamic pressure (Q) that bracket the flutter

point. The generalized displacements agree well with the struc-

tured grid (CFL3D) solution which verifies the unstructured grid

methodology for aeroelastic analysis. The flutter speed for this

case, determined by interpolation of the dominant damping of

these generalized displacements, also agrees to within 2% of the

CFL3D value.



To test the more-recently-developed upwind-type Euler flow

solver, ,;teady flow results were obtained for the NACA (]012

airfoil at ,_,1_ = 0.8 and _,, = 125", using both implicit and ex-

plicit time marching, t5 The explicit fimemarching results were

obtained using a CFL number of 2.5 and the implicit time-

marching results were obtained using a CFL number of I00,000.

A comparison of the convergence histories is shown in Fig. 7(a)

and the resulting steady pressure distribution is shown in Fig.

7(b). The "error" in the solution was taken to be the L.,-norm

of the density residual. As shown, the explicit solution is very

slow to converge whereas the implicit solution is converged

to h)ur orders of magnitude in only approximately 500 steps.

Also, the pressure distributions indicate that there is only one

grid point within the shock slruclur¢, on either the upper or

lower surface of the airfoil, due ttI, the sharp shcx:k capturing

ability of the flux splitting. Converged steady _lutions are thus

obtained with the implicit algorithm with an order of magni-

tude less CPU time than the explicit algorithm, and the shock

waves are more sharply captured with the flux-split spatial dis-

crelization than the central-difference-type discretiz_tion. These

improvements in accuracy and efficiency arc also realized for

unsteady applications.

Conical Euler Results

Calculations were performed using the conical Euler version

of the central-difference-type flow solver to investigate unsteady

vortex-dominated flows about highly-swept delta wings, t4 This

code includes the additional analysis of the free-to-roll ease by

the inclusion of the rigid-body equation of motion for simultane-

ous time integration with the governing flow equations. Results

were obtained for a 75 ° swept delta wing at a freestream Mach

number of 1.2 and an angle of attack of 30 °. A partial view of

the grid which was used is shown in Fig. 8. The grid, which

has a total of 4226 nodes and 8299 elements, indicates that the

wing has thickness and sharp leading cdges.

Figure 9 shows the free-to-a)ll response of the wing which

was initiated by using an initial angular velocity. In this cal- {do q )

culation, fl)r simplicity, the mesh was moved to confi)rm to the

instantaneous posili¢_n of the wing by rotating rigidly according

to the wing roll angle, rather than by using the deforming mesh

algorithm. The results indicate that initially the o_illatory re-

sponse diverges for small values of roll angle. As the angle

increases to around 35 °, the rate (ff divergence decreases due

to stabilizing aerodynamics, and finally, the response reaches a

maximum amplitude of motion at ¢ = 38 ° corresponding to a

limit cycle. These results are similar in nature to those obtained

by Arena and Nelson zz in a low-speed experimental investiga-

tion of wing rock. The wing-rock time history from Ref. 22,

shown in Fig. 10, was obtained for an 80* swept delta wing at

30 ° angle of attack. Although the case considered in Fig. 9 is

different from that of Ref. 22 (the data from Ref. 22 are for

low speed flows whereas the conical Euler code is limited to

supersonic freestream applications), the similarity between the

two sets of results in Figs. 9 and 10 is noteworthy and gives

credibility to the present calculations.

Three-Dimensional Euler Results

Unsteady flow results were obtained for a supersonic fighter

configuration that was oscillating in a complete-vehicle bending

mode to demonstrate a three-dimensional application of the

central-difference-type Euler solver, t2 The results were obtained

using a grid which has 13,832 nodes and 70,125 tetrahedra.

The surface triangulation of the aircraft is shown in Fig. ! I(a)

and the bending mode shape (exaggerated by a factor of five)

is shown in Fig. 1 l(b). Instantaneous pressure distributions

on the surface of the vehicle at the maximum (bend-up) and

minimum (bend-down) amplitudes of oscillation are shown in

Fig. 12. For this case the freestream Mach number was

2.0, the reduced frequency (based on wing tip semi-chord)

was 0.1, and two angles of attack of 0 and 12 degrees were

considered. The results of Fig. 12 show the effects of angle

of attack on unsteady pressures, and clearly demonslrate that

the unstructured grid methodology can treat complex aircraft

configurations undergoing structural deformation.

4i"1

4O
o 500 t ooo

Nondlmenslonal Time

Fig. 8 Partial view of unstructured grid about a 75 °

swept deha wing.

Fig. 10

Free-to-roll time history for a 75 ° swept delta

wing at M:_ = 1.2 and ¢_ = 30 °,

Wing-rock time history for an 80 ° swept delta

wing at 30 ° angle of attack (Ref. 22, reprinted

with permission from Professor Robert C. Nelson,

Notre Dame University).



Toteslthe more-recemly-developed upwind-type Euler flow

.'_flver, calculations were performed for the ONERA-M6 wing. t6

The M6 wing has a leading edge sweep angle of 30 ° , an

aspect ratio of 3.8, and a taper ratio of 0.562. The airfoil

section of the wing is the ONERA "D'" airfoil which is a 10%

maximum thickness-m-chord ratio conventional section. The

results were obtained using a grid which has 42,410 nodes

and 231,507 tetrahedra. Results were obtained for the M6

wing at a freestream Mach number of 0.84 and 3.060 angle

of attack. These conditions were cho._en for comparison with

the experimental pressure data of Ref. 23 as shown in Fig. 13.

"llle res,lts indicate that there is a weak supersonic-to-supersonic

(a) original surface grid. (b) assumed bending mode.

Fig. 1 I Surface grid for the Langley supersonic fighter

configuration.

• CO=0 ° • _=12 °

Bend-up

Bend-down Bend-down

Fig 12

.25 Cp .25

I-fleets of angle of attack on the instantaneous pressure coefficient contours on the

Langley tighler configuration at the maximt)nt (bend-up) and minimum

(_nd-down) amplitudes of dcforniation computed using the

central-difference-type Euler flow solver at Moo = 2.0 and k = O.l.



shockwaveintheinlx_ardregion,fi_rwardtowardtheleading-
edge.Theprimary, supersonic-to-subsonic shock which occurs

in the midchord region coalesces with the first shock in the

outboard direction toward the wing lip. Near the tip, the two

shocks merge to h)rm a single, strong, supersonic-to-subsonic

shock wave. The Euler results are in fairly good agreement

with the experiment:d pressure data, especially in predicting the

strength and location of the shock waves, which tends to verify

the upwind-type algorithm. The shocks are sharply captured

with only one grid point within the shock structure, due to the

flux .splitting.

Spatial Adaption Results

To demonstrate the spatial adaption procedures, results are

obtained fi_r the NACA 0012 airfoil pitching harmonically about

the quarler chord.t_ The freestream Mach number was 0.755 and

the mean angle of attack was 0.1)16 °. The pitching amplitude

was 2.51 ° and the reduced frequency (based on semi.chord)

was 0.0814. Figure 14 shows the instantaneous adapted meshes

and Fig. 15 shows the corresponding instantaneous density

contour lines tap = 0.02). The instantaneous meshes and

density contour lines during the third cycle of motion were

phmed at ciglit points in time. In e:_ch plot, the instantaneous

pitch angle ,(r) and the instantaneous angular position kr in

the cycle are noted. The instantaneous meshes (Fig. 14) clearly

indicate the enrichment in regions near the shock waves and near

the stagnation points. They :tlso show coarsened regions where

previously enriched regions have relatively small flow gradients.

The density contours during the cycle (Fig. 15) demonstrate

tire ability of the spatial adaption procedures to produce sharp

transient shock waves.

_ Euler

o Experiment rl = 0.95

= 0.9

q = 0.65

-Cp o

Fig. 13

q = 0.44

q =0.2

0 1.0
X/C

/

Comparisons of steady pressure dislrihuiions for

the ONERA M6 wing computed osing the

upwind-type Euler flow solver with fluxwector

splitting at M,_. = 0.84 and ,,, = 3.06 °.

Temporal Adaption Results

To demonstrate the efficiency of temporal adaption over

global time-stepping for unsteady problems, results were ob-

tained for the same NACA 0012 pitching airfoil case of the

previous section, t8 Figure !6 shows calculated results obtained

using temporal adaption and global time-stepping as well as

comparisons with the experimental pressure data of Ref. 24. In

each pressure plot the instantaneous pitch angle o(r) and the

angular position in the cycle/,:r are noted. During the first part

of the cycle there is a shock wave on the upper surface of the

airfi_il. :rod the flow over the lower surface is predominately

subcritical. During the latter part of the cycle the flow about the

upper surface is subefitical, and a shock h)rms along the lower

surface. The pressure distributions indicate that the shock posi-

tion oscillates over approximately 25% of the chord along each

surface, and in general, that the two sets of calculated results

compare well with each other. This good agreement verifies the

time-accuracy of the solution computed using temporal adap-

tion, which was obtained at one-fourth of the CPU time that the

global time-stepping solution required. Both sets of calculated

resuhs also agree well with the experimental data.

Concluding Remarks

The current status of unstructured-grid methods develop-

mcnt in the Unsteady AcrtMynamics Branch at NASA Lang-

ley Research Center was de_ribcd. These methods are being

developed for unsteady aerodynamic and aeroelaslic analyses.

The pal_cr highlighted the flow solvers that have been devel-

OlX:d fi_r the solution of the unsteady Euler equations and gave

selected results which dentonstrated various features of the ca-

p:thility. The results demonstrated two- and three-dimensional

applications for tx_th steady and unsteady flows. Comparisons

of twodimensional steady and unsteady results were made with

solutions obtained using a structured grid code and with exper-

imental data to determine the accuracy of the two dimensional

flow solvers. Comparisons of three-dimensional steady results

were also made with experimental data to determine the accu-

racy of the three-dimensional flow solver. These comparisons

showed good agreement which thus verifies the accuracy of the

unstructured grid methods.
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